

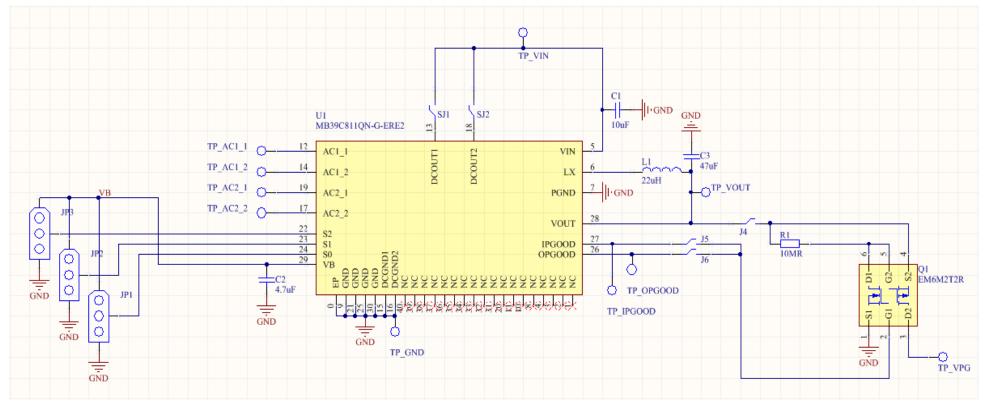
MB39C831

Ultra Low Voltage Boost Power Management IC for Solar/Thermal Energy Harvesting

The MB39C811-breakout module from Bazinga is an easy-to-use breakout for your energy harvesting projects. The module is capable of accepting solar, piezoelectric, or any high impedance AC or DC source.

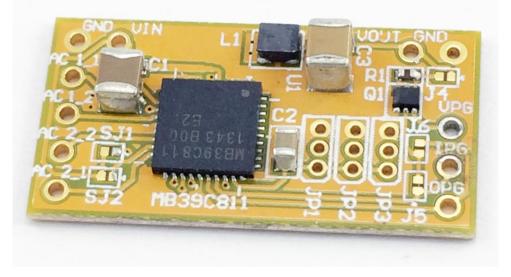
Energy harvesting is the process by which energy is derived from external sources (e.g. solar or light energy, thermal energy, and kinetic energy) and stored for small, wireless autonomous devices like those used in Wireless Sensor Nodes (WSNs).

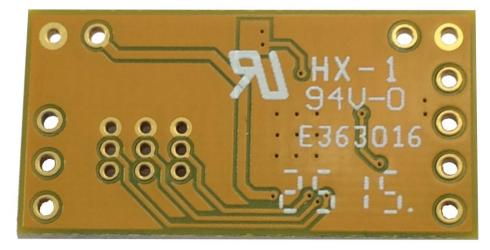
Links


http://www.spansion.com/downloads/MB39C831_DS405-00014-E.pdf http://www.spansion.com/fjdocuments/fj/DATASHEET/e-ds/MB39C811-DS405-00013-0v01-E.pdf http://www.spansion.com/fjdocuments/downloads/EDG/binary/pdf/catalogs/AD405-00008.pdf http://www.spansion.com/fjdocuments/downloads/EDG/binary/pdf/catalogs/ad405-00010.pdf

Quick Start Instructions

- 1. Refer to Table 4-2 and short the necessary jumpers/switches with solder
- 2. Connect the solar cell/piezo element to AC1 or AC2 or both
- 3. Monitor VOUT and/or VPG once harvested input is greater than ULVO release voltage to start up MB39C811




MB39C811 Breakout Schematic View

MB39C811 Breakout PCB View

BAZINGA! Ideas to Gadgets Email: contactus@omgbazinga.com | Website: www.omgbazinga.com

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input voltage	VIN	-	2.6	-	23	V
Input slew rate	VIN	VIN ≥ 7V	-	-	0.25	V/ms
Input current	VIN	-	-	-	100	mA
AC pin input voltage	AC1-1, AC1-2,				23	V
	AC2-1, AC2-2	-	-	-	23	v
AC pin input current	AC1-1, AC1-2,			-	50	mA
	AC2-1, AC2-2	-	-			
Output voltage	VOUT	See Table 4-3 1.5		-	5	V
Output current	VOUT	Up to 100 mA -		-	100	mA
UVLO release voltage		JP3=L, JP2=L, JP1=L (1.5V)		4.0	4.2	v
	VOUT	JP3=L, JP2=L, JP1=H (1.8V)	3.8			
		JP3=L, JP2=H, JP1=L (2.5V)				
		JP3=L, JP2=H, JP1=H (3.3V)	4.04	5.2	5.46	v
		JP3=H, JP2=L, JP1=L (3.6V)	4.94			
		JP3=H, JP2=L, JP1=H (4.1V)		7.2	7.56	v
		JP3=H, JP2=H, JP1=L (4.5V)	6.84			
		JP3=H, JP2=H, JP1=H (5.0V)	7			
Forward bias	AC1-1, AC1-2,		450	000	450	
voltage	AC2-1, AC2-2	IF=10 μA	150	280	450	mV

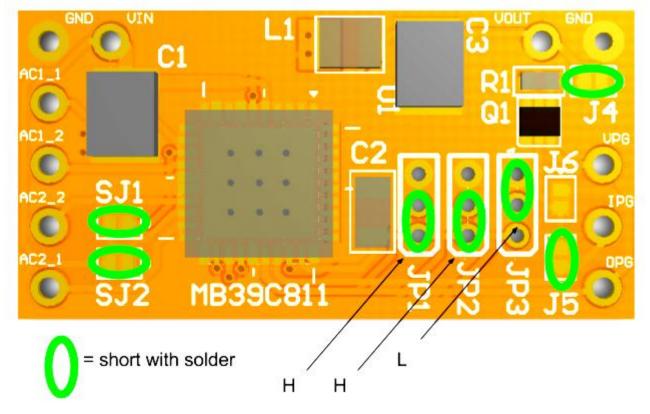
Table 2-1 Evaluation Board Specification

Please see the MB39C811 datasheet (DS405-00013) for more information.

Table 4-1 Input/Output Pin Descriptions

Pin Number	Pin Symbol	I/O	Function Description	
TP1	AC1-1	I	Bridge rectifier 1, AC input 1	
TP2	AC1-2	I	Bridge rectifier 1 , AC input 2	
TP4	AC2-1	I	Bridge rectifier 2 , AC input 1	
TP3	AC2-2	I	Bridge rectifier 2 , AC input 2	
			DC power input	
TP5	VIN	I	It supplies power through the bridge rectifier from	
			DCOUT1/2 to the VIN pin.	
TP6	GND	ND - GND pin		
TP7	VOUT	0	VOUT pin	
TP8	GND		GND pin	
TP9	VPG	0	Power Gating VOUT pin	
TP10	GND	-	GND pin	
TP11	IPGOOD	0	Input power good monitor pin	
TP12	OPGOOD	0	Output power good monitor pin	

Ideas to Gadgets


Email: contactus@omgbazinga.com | Website: www.omgbazinga.com

A7

Table 4-2 Jumper, Switch Descriptions

Jumper, Switch	Function Description	Initial Setting	
SJ1	Connection jumper between the DC output pin (DCOUT1) of bridge rectifier 1	Dettern chart	
	and DC input pin (VIN) of DC/DC converter	Pattern short	
SJ2	Connection jumper between the DC output pin (DCOUT2) of bridge rectifier 2	Pattern short	
	and DC input pin (VIN) of DC/DC converter to "open/short"		
JP1	High/Low selecting switch for S0. See Table 4-3.	н	
JP2	High/Low selecting switch for S1. See Table 4-3.	н	
JP3	High/Low selecting switch for S2. See Table 4-3.	L	
JP4	Short between VOUT and Power Gating Circuit	Short	
JP5	Short between IPGOOD and Nch-Gate of Power Gating Circuit	Short	
JP6	Short between OPGOOD and Nch-Gate of Power Gating Circuit	Open	

*: Open/Short by soldering

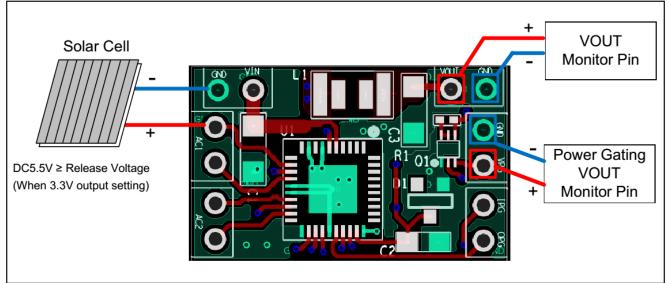
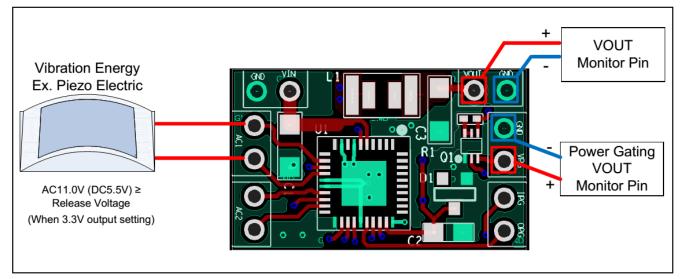


Table 4-3 Output Voltage Settings

S2 Pin (JP3)	S1 Pin (JP2)	S0 Pin (JP1)	Preset Output Voltage
L	L	L	1.5
L	L	Н	1.8
L	Н	L	2.5
L	Н	Н	3.3 (Initial setting)
Н	L	L	3.6
Н	L	Н	4.1
Н	L	L	4.5
Н	Н	Н	5.0


Ideas to Gadgets Email: contactus@omgbazinga.com | Website: www.omgbazinga.com

Solar Energy Harvesting with MB39C811 Breakout

- To output 3.3V voltage to VOUT pin, input a DC 5.5V or more voltage into TP1 (AC1-1). Recommend solar cell of 8cells or more, if connect solar cell. The number of plus for UVLO release voltage (5.2Vtyp@3.3V setting) and the forward bias voltage of diode (0.28Vtyp) are required to start up (see the Table 2-1).
- 2. 3.3V is output to TP7 (VOUT) and TP9 (VPG).
- 3. To change the output voltage, change the jumper settings (see the Table 4-3) using soldering.

Vibration Energy Harvesting with MB39C811 Breakout

- 1. To output 3.3V voltage to VOUT pin, input AC 11V (DC5.5V) or more voltage into TP1 and TP2 (AC1-1 and AC1-2). The number of plus for UVLO release voltage (5.2Vtyp@3.3V setting) and the forward bias voltage of diode (0.28Vtyp) are required to start up (see the Table 2-1).
- 2. 3.3V is output to TP7 (VOUT) and TP9 (VPG).
- 3. To change the output voltage, change the jumper settings (see the Table 4-3) using soldering.